A CoDesign Experience with the MCSE Methodology

J.P. Calvez, D. Isidoro

IRESTE La Chantrerie CP 3003 44087 Nantes cedex 03

France

fax (33).40.68.30.66, email: jcalvez@ireste.fr

Abstract

In this paper, we describe the experimentation of our
codesign process to develop a communication system which
needs to correctly mix hardware and software parts to
satisfy required performance. The system design process is
based on the MCSE methodology and we show its
usefulness for CoDesign. CoDesign is shown as an
enhancement of the implementation specification step of
MCSE. System partitioning is the result of an interactive
procedure based on performance and cost evaluations. The
complete description of the implementation is obtained by
transformations of the functional description: C or C++ for
the software part, VHDL for the hardware part. The links
between the hardware and software parts are also
synthesized.

Such a procedure and associated tools lead to efficiently
obtain system prototypes in an incremental manner.

1: Introduction

The increase in demand and complexity of systems
requiring electronics leads to consider concurrently two
technologies which are software and hardware. A suitable
solution to a given problem is in this case the result of trade-
offs between both technologies which is derived from an
analysis of imposed constraints such as performance,
manufacturing cost, time-to-market.

Developing such kind of systems is not new, but the
process to design them has to be improved to significantly
increase the number and variety of designed embedded
systems with a notable development cost reduction. The
design of such systems according to an integrated
development process require to know and to use a complete
design methodology useful for heterogeneous systems as
well as computer tools to assist designers for the
description, evaluation, implementation, realization steps.

CoDesign (Concurrent Design) is defined as the use of a
complete top-down design process and related tools
(CASHE for Computer-Aided Software and Hardware
Engineering) to transform a system specification into an
operational product which satisfies required performances,
cost, time-to-market and quality constraints [1], [11].

0-8186-6315-4/94 $04.00 © 1994 IEEE

140

The main problem CoDesign must solve is to determine,
from a specification which explains the functional objective
to satisfy for a given application, the appropriate hardware
architecture and for its programmable hardware part the
software to run on it. A diversity of technological solutions
exists based on available components.

The CoDesign problem concerns, in the short term, the
definition and use of a suitable development process which
leads to correctly use existing tools. Following such a
design process, new tools will then be conceived.

Codesign problems to be solved also depend on the kind
of application and more specifically of the needed hardware
architecture. In most cases, a template architecture on
which the functional solution has to be mapped is first
chosen. It is what we have done in our experimentation. In
codesign related works, the mainly used architecture is a
master/slave architecture using a conventional
microprocessor or microcontroller as the master and an
ASIC (FPGA or other) as the slave part to implement the
time-constraint functions. The partitioning is often easy and
defined interactively. The main problem concerns the
synthesis of the interface between hardware and software
(Hw/Sw interfaces) [7], [9], (10], [11]. Moreover, in most
cases, the functionality is explained by an algorithm (mostly
sequential) from which the partitioning is determined
according to timing constraints [10].

The approach we have followed for our example is
different. First, a master/master architecture has to be used
to obtain the best performance for the message transfer
protocol. The ASIC shares the memory with the
microprocessor, this implies an arbitration of the bus.
Synchronizations have to be implemented between the Asic
and the microprocessor in both directions. Moreover, the
microprocessor is supposed to run other software tasks,
therefore, the Hw/Sw interface must use interrupts and not
always a polling technique in order to release the
microprocessor as often as possible. Second, the
functionality is described by a set of sequential cyclic tasks,
each of them enough detailed to be completely
implemented in hardware or in software (coarse-grain
partitioning).

In this paper we describe a codesign experience and
show that a system design methodology called MCSE
(Méthodologie de Conception des Systémes Electroniques),
we have developed for real-time systems [3] is appropriate
for CoDesign. The contents of the paper is as follows.
Section 2 briefly describes the MCSE methodology and its
conceptual description model. Our illustrative example is
given in Section 3, for which the explanation uses the
MCSE functional model. This presentation is enough to
show the importance of the implementation specification
step for CoDesign, step which is detailed in Section 4.
Section 5 describes two solutions we have implemented for
our example. Section 6 presents tools we are using for our
codesign experience. Section 7 describes our future work.

2: Design process and description model of the
MCSE methodology

For efficiency and quality reasons, every design must be
done according to a methodological process which is based
on a hierarchy of description models which go from the
preliminary idea to the final product. The design process
described hereby and which is relevant to system design is
based on the MCSE methodology specifically conceived to
design embedded real-time systems [3], and which has been
enhanced to support ASIC design [4]. Hereafter we only
describe briefly the MCSE methodology. Readers more
interested are invited to see [3], [6].

System designers must proceed according to four steps:
system specification, functional design, implementation
specification, realization. The result, at the end of each step,
must be in conformance to an appropriate class of
description model.

The purpose of the first specification step is to express a
purely external view of the system (WHAT) starting from
needs and user requirements.

The purpose of the functional design step is to find an
appropriate internal architecture (which explains the HOW)
but according to an application-oriented viewpoint. The
description based on a functional structure or the behavior
of each function has to be technology-independent.

The third step called the implementation specification
step, consists in searching firstly for the executive support
or hardware architecture and secondly for the way of
implementing software functions. Timing constraints and
performance are then analyzed to determine the hardware/
software distribution.

The implementation step leads to an operational system.
Implementation which includes testing, debugging and
validation, is a bottom-up process since it consists of
assembling individual parts, bringing out more and more
abstract functionalities.

141

The conceptual model on which MCSE is based.
includes two views, each corresponding to a specific aspect
of the solution:

- the functional model allows to describe a system by a
set of interacting functional elements (functional
organization dimension or functional structure) and the
behavior of each one. Described with a hierarchical and
graphical model, functions interact using relations of
one of the three types: the shared variable relation
which defines a data exchange without temporal
dependencies, the synchronization relation which
specifies temporal dependency, the message transfer by
port which implies a producer/consumer type relation.
the executive model describes the architectural structure
based on active components (microprocessors, specific
Processors, hardware components) and
interconnections between them.

These two views, when separately considered, are not
sufficient to completely describe a solution. It is necessary
to add the mapping between the functional viewpoint and
the executive viewpoint by defining an integration or
allocation correspondence also called configuration.

The functional model, located between models
appropriate to express specifications and the architectural
model, is suitable to describe the internal organization of an
object by explaining all necessary functions and couplings
between them accordingly to the problem viewpoint.
Designing with this method leads to a technology-
independent solution. As a matter of fact, with this kind of
model, all or a part of the description may be implemented
either in software or in hardware. Therefore, this model is
interesting as a basis for CoDesign.

3: Description of our example

The chosen example is interesting to illustrate our
method and to show the problems related to codesign.

Let us consider a communication system used to send
short messages or packets (256 bytes max) between
producers and consumers. Producers and consumers are
software tasks which are implemented on several similar
boards interconnected through a 20 Mbits/s serial bus called
Transbus [2]. The bus includes 4 lines: a DATA line as the
data medium (bit protocol similar to the transputer link
protocol except for acknowledgment), an ACK line for
acknowledging each transmitted byte, 2 lines (TokenIn and
TokenOut) to control the bus access according to a
hardware token ring. The objective is to develop the system
corresponding to one board. A performance constraint is
considered which can vary between a low performance and
the highest performance for message throughput.

To explain the needed functionality, we first describe
the solution resulting from the use of the two first steps of
the MCSE methodology (specification and functional

Link Protocol

|
|
'
'
:
‘
]
i
|
1
lToken !
L ' AddrC
o | § Token ‘)
EmissionByte x Management | ReceptionByte
'
—.. '
A Emission L
H H]
N .4";- Divides 4'
Clk20 :l] Clk60
T
Tokenln 1 TokenOut
'
TRANSBUS, Ack g !
o
Data g ¢
L

-Figure 1 - Functional structure for the communication protocol example.

design steps). Figure 1 describes the internal (functional)
structure of the communication board on the 20 Mbits/s
serial bus. The way followed to obtain this solution is not
the objective of this paper. See [3].

If we analyze this result, first the functional model is a
structured model which leads to describe the complete
organization of the application in a hierarchical manner.
The model is graphical and hierarchical, so the designer can
proceed by searching for his internal solution by stepwise
refinements. The hierarchical approach is suitable to easily
manage the complexity. Functions (or processes) of the
model (rectangle) are active functional components which
transform input data and produce output values, are easily
described by a sequential cyclic algorithm.

The meaning of the solution for our example (Fig 1) is
quite easy to understand. The functional structure is a
technology-independent ~ solution. It is completely
understandable and can be validated in VHDL after the
behavior of each function has been described. Graphical
tools we have developed [8] are useful to generate a
complete VHDL model which is simulatable. Performances
can be analyzed by this way. For that we use the simulation
technique to evaluate the average time between two bytes.

From this design result, the designer has to select an
appropriate executive structure after having defined the
partitioning. One can easily imagine that the performance
constraints will modify the partitioning. For a low
performance level, a minimum of hardware is necessary to
convert a byte into a bit stream. It is the same to receive each
byte. The remainder can be implemented in software. For a
high performance level, EmissionMess and ReceptionMess
have also to be implemented in hardware because a byte is
sent or received in less than 600 ns. Messages have to be
read or written in a memory accessible by producers and
consumers (software functions).

142

For this design problem, we have considered a generic
hardware architecture shown in Figure 2. A board has been
developed which includes a well-known microprocessor
(68000), a Xilinx 4005 FPGA, and a memory shared by
both components. The microprocessor can have access to
the FPGA and the memory, the FPGA can also have access
to the memory and can generate an interrupt to the 68000.
The bus arbitration is done by the two signals BusReq and
BusAck. This board has been chosen only to be able to
prototype the application and to make CoDesign
experiences. If industrial constraints (cost, speed, time-to-
market,...) are considered, better solutions may be found.

Based on this hardware choice, the CoDesign problem is
how to convert the functional description into all necessary
parts to obtain through generation and synthesis the FPGA
programmation and the software part on the 68000. Our
proposed CoDesign process is described in the next section.

Interrupt
BusR 4 lines
MICROPROCESSOR BusAck XILINX 4005
68000
CLOCK
II Bug CKk6o II

TRANSBUS
| Shared memory |

-Figure 2 - Generic hardware architecture for the example.

4: The implementation specification step for
CoDesign

The aim of this step is to find the most appropriate
mapping of the functional description onto a hardware
architecture which has to be selected in order to best satisfy
performance and cost criteria. This step is decomposed into
three phases shown in Figure 3.

The codesign process evolves as follows:
Phase 1. Detailing functional design

« Take account of geographic distribution constraints,
« Addition of physical and man/machine interfaces.
Phase 2: Partitioning
« Decomposition into sub-sets corresponding to software
parts and hardware parts based on performance and
timing constraints,
« Specification of the executive structure and allocation
of functions on components.
Phase 3: Generation, synthesis, evaluation
« Architectural design and synthesis of the hardware part,
« Specification and generation of the software part,

+ Synthesis and/or generation of the hardware/software
interfaces,

» Behavior and performance evaluation.

Hereafter we succinctly describe each phase and explain
its application to the example.

4.1: Detailing functional design

The phase 1 is necessary to transform the functional
description which is technology-independent into a
description physically compatible with the system
environment. The functional description depicted in Figure
1 shows this kind of result. Indeed, the functional structure
concerns only one board. The geographic distribution
constraint, stipulates that producers and consumers are
distributed on different boards. As the bus (Transbus
specification) is imposed, each board has also to satisfy the
physical bus interface. An optimisation is also often done to
reduce the number of clock event functions. The result is a
complete, detailed and optimized functional description
useful for partitioning.

Specif

4.2: Partitioning

Phase 2 concerns the search of an appropriate hardware
as a support to the detailed functional description which
leads to an operational solution satisfying performance,
timing constraints, cost, etc. Partitioning of the functional
structure is the first task to identify functions which can be
implemented in software, and functions which are
compulsorily implemented in hardware. With MCSE, we
suggest to follow an interactive partitioning procedure
driven by the designer who can easily decide for each
function the best choice between a hardware or a software
implementation according to event, message and function
activation frequencies. The executive structure can then be
decided: hardware functions will be implemented in an
ASIC part (one or more components), software functions
will be implemented in one or more microprocessors
depending on timing and cost constraints. Necessarily links
between processor(s) and ASIC(s) are also specified from
corresponding relations of the functional structure.

For our example, the performance of the communication
board is expressed by the bus throughput or number of
bytes/s transmitted and received. This performance will be
determined by the rate at which EmissionMess and
ReceptionMess can exchange each byte with EmissionByte
and ReceptionByte. We have to consider two cases
mentioned in the specification:

- For low performance: TokenManagement,

EmissionByte, ReceptionByte driven by a 20 Mhz and

60 Mhz clocks, Clock and Divide3 functions are

necessarily implemented in hardware to satisfy the

20 Mbits/s rate. It is easy for a designer to determine
that these functions are the minimum to implement in
hardware. The criterion for each function is its
activation frequency or period. All other functions can
be implemented in software on the same

J‘ Functional description
h 4

geographic
distribution

environment constraints

physical interfaces

Phase 1

\Eetailed functional description

performances, timing constraints

Partitionning, allocation

“1

Phase 2 hardware part i programmable part
%g’;‘i“gc;‘:g' Interface Software (Iirﬁrrrecuons .
Phase 3 synthesis synthesis specification provements
for 1
verification l & l Specitication
for realization
technological specifications I Evaluation (analysis, simulation)

Figure 3. The implementation specification step for CoDesign.

microprocessor. The lowest bound of the activation
period (Tactivation) for a feasible implementation of
a function in software is between 20 and 50 ps
without considering its execution time. Its execution
time (Texec) is also to be considered. The ratio Texec/

Tactivation defines the utilization ratio of a

microprocessor for the function.

- For the highest performance, because a byte can be
sent or received in about 600 ns, EmissionMess and
ReceptionMess must be activated at 1.8 Mhz. This
implies a hardware implementation for these two
functions. All other functions implemented in
software determine the system performance.

The chosen hardware architecture shown in Figure 2 is
well-suited to prototype both cases because it is a generic
architecture. For the first case, the shared memory is not
necessary (the same for BusReq, BusAck and Interrupt).
In the second case, the links between software functions
(Producer and Consumer) and hardware functions
(EmissionMess and ReceptionMess) i.e. Lreq and Lind
ports, are implemented with the shared memory and the
interrupt line. The size of these ports is also an
implementation parameter. In Section 5, we detail the two
solutions for the emission part.

4.3: Generation, synthesis, evaluation

Phase 3 concerns the generation of the whole solution
including software and hardware parts. For the hardware,
two parts (and so two levels) are concerned: first the
schematics of the system based on off-the-shelf
components such as microprocessor(s), memories, EPLD,
FPGA, etc., which are conventional and easy to draw with
EDA tools, second the description of the ASIC part. This
second part has to be described in VHDL in order to use
available VHDL synthesizers. For that, each function is
described in VHDL at a RT level. The pads description
has also to be added.

For the software part, very often, a multi-task
organization scheme has to be decided due to the
implementation of many asynchronous functions on the
same microprocessor. One way is to define a software
implementation scheme (see MCSE) without using a real-
time kernel (RT kernel): some functions such as
EmissionMess and ReceptionMess are implemented on
interrupts. Another way is to use a RT kernel. In such a
case, each function is implemented as a task and relations
between functions use semaphores, mailbox and shared
resource mechanisms. Writing the software in C or C++ is
easy: most part can be generated by tools in a semi-
automatic manner.

Correct interfaces between the hardware and the
software parts have also to be generated to correctly
implement functional relations. From the 3 kinds of the

144

MCSE functional relations, few transformation rules can
be specified and the implementation results from using a
VHDL package for the hardware, and C procedures for
the software.

The hardware part described first in VHDL and then
in a gate model after synthesis can be simulated and
correctly verified with the software part and the system
environment if you have previously written the complete
functional model in VHDL during the functional design
step. Critical parts and performance are easily evaluated
by this way by analyzing the simulation waveforms.

From the result of this CoDesign step, the system can
be prototyped. An important question is then how to test
and debug such a prototype with software and hardware
parts. One answer is to monitor both parts. Monitoring
the hardware with a logic analyzer is more difficult for
ASIC than for a board including standard LSI
components. Moreover, errors can be due to the link
between the hardware and the software parts of the
solution. The CoDesign process we have detailed above
is helpful for this task. Because we propose to use
generators to produce the software and the hardware
description in VHDL, it is therefore easy to add specific
statements (software statements or VHDL statements) to
obtain a way of capturing an event trace in real time
which permits to understand the behavior of the system
[6]. These statements can then be removed at the end of
the development.

5: Detail of our solution for the transmission
part

To illustrate Our CoDesign procedure, in this section
we describe the solution developed only for the
transmission part of the communication protocol but for
the two performance levels. The objective is to show the
advantage of the functional description for deciding the
partitioning and to present some transformation rules of
Hw/Sw functional relations and the corresponding
VHDL description style.

From the functional structure described in Figure 1,
we extract the necessary functions (the left side) to define
the hardware and the interface with the application
software. For high performance, only the producer
function is implemented in software. For low
performance, EmissionMess is also a software function.
For both cases, the problem is to translate a port relation
(Lreq or Creq) as the interface between the hardware and
the software parts. Shared variables implemented as flip-
flops and registers are used for that.

5.1: Low-performance solution

The EmissionMess function has to send each message
byte after byte in Creq. EmissionByte driven at 20 Mhz

Procedure EmissionMess(Mess:def_mess);

Creq Const addr of CH&BF=F80000h;

begin
for I=1 to Mess[2]+1 do begin

repeat until not BF;
end;

repeat until not BF;
end;

\
CH[
T

BF and CH are written concurrently

because BF and CH are at the same address

VarCH: Process (WrCH, Reset);
begin
if (Reset = ’1”) then CH <= "000000000";
elseif (WrCH'event and WrCH="0") then
CH <= Din; endif;

CH&BF:=Mess[I]&false&true;

CH&BF:=Mess[Mess[2]]&true&true;

Mess[2] represents the message length

EmissionByte: Process (Clk20, Reset);
begin
if (Reset = "1’) then
RstBF <="1";
elsif (Clk20’event and clk20="1") then
RstBF <= "0’;
case STATE is
when Idle =>
if BF="1" then
CHR :=CH;
RstBF <="17;
Emission <="1";
STATE <= TokenWait;
when TokenWait =>

VarBF: Process (WrBF, RstBF);
begin
if (RstBF = '1’) then BF <= 0",
elseif (WrBF’event and WrBF="0") then
BF <="1"; end if;

Figure 4 'The software driver and a part of the VHDL description for the interface.

sends each byte in 600 ns when it has the token (Emission
is used to ask for the token when receiving the first byte of
a message). Even in the polling mode, the 68000 is not
able to send a byte faster than 5 to 8 ps. Therefore, the
necessary Creq port size is only one byte and Creq can be
transformed in two variables: one to store the byte (CH)
and another one to indicate the status Buffer full or not
(BF) of CH. For the software interface, the best solution is
to write EmissionMess as a driver procedure called by
Producer, which includes a busy wait synchronization on
the BF flag. The solution is given in Figure 4.

CH (and Creq) is 9 bit wide, CH[8] (the MSB) is used
to indicate the last byte of each message. The shared
variables CH and BF are described as asynchronous
processes, solution which is necessary for BF because the
resolution function is not synthesizable. EmissionByte is
described at the RTL level synchronous to Clk20 to be
synthesizable with the Compass synthesizer we are using.

Lreq
==

ADVLreq[

Vlreq {'
LreqBF {

Const ADVLreq =F80000h;
begin
if LreqBF then wait(LreqBFfalse);
VLreq:=Mess;
LreqBF:= true;
end;
given to EmissionMess function.

kernel to wait on the LreqBF interrupt.

manner as BF in Fig 5.

Procedure EmissMess(Mess:def_Mess);

ADVLreq:= addr of VLreq in memory;

ADVLreq is the VLreq address in the memory
wait(LreqBFfalse) is a primitive of a real-time

LregBF is described in VHDL in the same

5.2: high-performance solution

EmissionMess has now to be implemented in
hardware. Therefore, the Lreq port is again transformed in
two variables: one to store a message (VLreq) and a
boolean LreqBF for synchronizations (Fig 5). The VLreq
is implemented in the shared memory which is 16 bit
wide. The address where the message is written in the
memory is sent to the hardware (ADVLreq in 16 bits to
simplify, the 8 least significant bits are always 0). To
avoid the CPU waiting the end of the message
transmission in a polling mode, the software is driven by
LreqBF. as an interrupt. The Wait primitive is used to
explain that the CPU is released for another task until
LreqBF=false.

EmissionMess is described synchronous to Clk20 or to
another lower clock derived from Clk20. It waits until the
LreqBF flag is true and then starts the transmission by
reading each 16 bit word of VLreq in the memory. Before
reading, it has to ask the bus to the CPU with BusReq and
then has to wait BusAck. The 2 bytes are successively sent

EmissionMess: Process (Clk20, Reset),;
begin
if (Reset = ’1") then
RstLreqBF <="17;
elsif (Clk20’event and clk20="1") then
RstLregBF <= "0’;
case STATE is
when Idle => if LreqBF="1" then
STATE <= waitBus;
BusReq <="1"; end if;
when waitBus => if BusAck then
STATE <=readFirstRd; end if;
when readFirstRd =>
Read(ADVLreq, Wrd);

Figure 6 The new software driver and a part of the VHDL description for EmissionMess.

145

to the EmissionByte function according to the preceding
protocol (CH and BF). The solution is given in Figure 6.

5.3: Results for the two solutions

In this section, we briefly describe the results of our
experience by indicating in the following table, the length
of the C software source code necessary for the 68000
CPU to simulate the producer and to load the Xilinx
configuration, the length of the VHDL program (300 lines
used to instantiate the pads), the size of the resulting ASIC
and its performance expressed by the time between 2
bytes on the transbus.

" Hardware Compiexity
Solution Software VHOL in gates performance
Low performance 90 lines 800 lines §00 17 ps
High performance 60 lines 1130 lines 1870 0.6 us

5.4: Remarks

For our example, we have observed some limitations.
The ReceptionByte function has to work at 60 Mhz and
EmissionByte at 20 Mhz. By using synthesizers and
specifically the Xilinx technology, it is not possible to
work higher then 10 Mhz. Only a design by hand of a
standard cell ASIC can lead to a good result at the 20
Mbits/s rate on the bus. Another limitation is due to the
small complexity of the Xilinx 4005. Only the Emission
part of the example can be implemented.

The chosen generic architecture is used only to
evaluate the ASIC complexity in gate number and the
communication performance. In the case of a real product,
all components (kind of CPU, ASIC technology) have to
be selected based on cost and performance criteria.

The VHDL description is very dependent of the used
synthesizer: the Compass Asic synthesizer was available
for us. The VHDL description of the pads is specific to the
chosen ASIC and the synthesizer to be used. This task we

v

have done by hand is made only once. When developing
CoDesign applications, it is important to take care of the
asynchronous characteristics of the Hw/Sw linked parts.
Therefore, some constraints must be met to avoid race
cycles and to respect flip-flop setup time.

At present, we are developing a new board for
prototyping more complex CoDesign applications. This
board includes a 68332 microcontroller, a Xilinx 4010, a
shared memory and a specific ASIC we have designed to
monitor both the hardware and the software during the
test phase.

6: CoDesign procedure and tools used

Because the MCSE functional model allows to
describe functions and inter-function couplings in a
graphical and hierarchical manner, it is easy to
understand that interactive and graphical tools can be
developed to capture the functional structure, the
behavior of each function, the executive structure with
the technology (hard or soft) of each component, the
mapping between the functional and the executive.

For the hardware part, we have developed a VHDL
generator (G_VHDL) which produces a simulatable
model [8] and a synthesizable model [5]. This model is a
translation of the functional structure according to some
rules describing the implementation of relations.

The codesign procedure and tools we are using are
shown in Figure 6. This figure also shows the work to be
done by the designer.

The partitioning and allocation step is done by the
designer based on timing constraints and execution time
estimation. This is not a complex task.

The transcription of the software part in VHDL is also
quite easy because only the software tasks linked to the
hardware (the interface or driver) have to be translated.
Delays are inserted between VHDL statements to

Phase 1 [

Functional design {detailed)

] Designer

¥

Transcription in a VHDL model
and simulation

G_VHDL generator and
Mcedel Tech simulator

Xact Xilinx

Performances o . l i
——’[Partitioning, allocation Designer
Phase 2 o rd
Verification
Corrections [Transcription in a VHDL model and simulation G_VHDL generator and
{modeling the sottware part in VHDL) Model Tech simulator (cosimulation)
' I
Expected performances y Y
Phase 3 Designer l Transcription in C Enhapr?emlealn%' the VHDL Designer
* ‘ Compass Asic synthesizer

Microtech or L

GNU compiler Cross-compilation]

I Synthesis

¥

Simulation

Board [

Load, test and debug

7 Emulator
Logic analyzer

v

Figure 6 The CoDesign procedure and tools .

approximately model the execution time. A macroscopic
modeling is often enough. This technique is used for
cosimulation (concurrent simulation of the hardware and
the software).

The transcription of the software part in C or C++ is at
present done by hand. This task is easy and fast because
the necessary software part concerned by codesign is
small.

7: Future work

When experimenting different solutions or when
requirements are changing, the designer’s objective is to
rapidly produce and test a new description. Based on the
MCSE methodology, our solution is to use graphical tools
to quickly modify the description, the partitioning and
select the appropriate generic models for the interfaces,
and then automatically produce the complete description.
It is why we are focusing our research on developing such
kind of tools both for the software and the hardware. The
semi-automatic generation of Hw/Sw interfaces is
possible based on generic VHDL models which are
parametrized from the selected functional relations and
appropriate transformation rules. The described example
has shown the basis of such rules.

From the knowledge of inputs and outputs, the pads
description in VHDL can also be generated in a semi-
automatic manner. Some parameters have to be specified
by the designer (kind and pin number of the pad, fanout,
.

The codesign procedure we are following seems long
due to the use of many tools from different vendors. It is
necessary to lead to a more homogeneous and easier to use
set of tools in order to shorten the development, test and
evaluation cycle.

8: Conclusion

In this paper we have described an example and two
different solutions for the transmission part of it. The
objective was to explain the system design methodology
we are using and to present our specific CoDesign
procedure as an enhancement of the implementation
specification step. We have also indicated tools we are
using to efficiently develop hardware/software systems
and more specifically for control-oriented applications:
commercial tools for simulation, synthesis, cross-
compilation, combined with prototype tools we have been
developing these last years.

One of the most important conclusion is the necessity
to start a CoDesign development with a complete
methodology based on a system approach which permits
to describe the solution at a functional and technology-
independent level. The design part concerned by
CoDesign appears therefore as a sub-set which includes

147

tightly coupled links between hardware and software. The
partitioning task is important but without existing
automatic tools, it is easily managed by the designer
according to an analysis procedure based on timing. One
way is to develop an interactive partitioning procedure
with a tool useful to evaluate the main characteristics for
decision. The choice of the hardware architecture is also
very important and has a great influence on the quality of
the result and the complexity of the work. Many solutions
exist. Designers are specifically concerned and this task is
interesting and creative.

Our experience has shown us that it is necessary to
have more integrated tools to improve the efficiency of
transforming a functional description into a prototype, of
testing and evaluating the system in real-time and
embedded in its real environment. Interactive and easy to
use tools is one way to keep the designer in the CoDesign
loop to decide for good solutions based on evaluation.

9: References

[1] K. Buchenrieder, Focus on HW/SW CoDesign,, CODES/
CASHE’93 , Second IFIP International Workshop on
Hardware/Software CoDesign, Innsbruck, Austria, May 24-
27 1993

[2] 1.P. Calvez, O. Pasquier, A TRANSputer interconnection
BUS for real-time systems, TRANSPUTERS’ 92 , Arc-et-
Senans, France, May 20-22 1992, M. Becker et al., Ed. IOS
Press, pp 273-283

[3] J.P. Calvez, Embedded Real-Time Systems. A
Specification and Design Methodology, John Wiley 1993,
670 p

[4] J.P. Calvez, Spécification et conception des ASICs,
Masson, June 1993, 580 p., to be published in english by
Chapman&Hall, April 1995

[S] J.P. Calvez, D. Heller, P. Bakowski, Functional-level
synthesis with VHDL, EUROVHDL'93, Hamburg, Sept. 20-
241993

[6] J.P. Calvez, O. Pasquier, D. Isidoro, D. Jeuland, CoDesign
with the MCSE methodology, EUROMICRO 94, Liverpool,
Sept. 5-7 1994

[71 M. Edwards, J. Forrest, A development environment for the
Cosynthesis of embedded software/Hardware systems,
Proceedings of the European Design and Test Conference
1994, Paris, Feb. 28-March 3 1994, pp 466-473

{8] D. Fermy, B. Rossignol, P. Bakowski, J.P. Calvez, Tools to
Design at a Functional Scheme Level using VHDL, EURO-
VHDL’91, Stockholm, sept 1991

[91 R.K. Gupta, G. De Micheli, Hardware-Softwarc
cosynthesis for digital systems, IEEE Design & test of
computers, Sept 1993, pp 29-41

[10] R.K. Gupta, C.N. Coelho, G. De Micheli, Program

implementation schemes for Hardware-Software systems,

IEEE Computer, Jan 1994, pp 48-55

D.E. Thomas, J.K. Adams, H. Schmit, A mode! and
methodology for Hardware-Software Codesign, IEEE

Design & test of computers, Sept 1993, pp 6-15

[11]

